Copied to
clipboard

G = C3xC23.14D6order 288 = 25·32

Direct product of C3 and C23.14D6

direct product, metabelian, supersoluble, monomial

Aliases: C3xC23.14D6, C62:11D4, C62.204C23, (C6xD4):9C6, D6:C4:15C6, (C6xD4):12S3, C6.51(C6xD4), Dic3:3(C3xD4), C6.200(S3xD4), Dic3:C4:15C6, (C3xDic3):18D4, (C2xC12).242D6, C23.14(S3xC6), (C22xC6).33D6, C6.D4:12C6, C32:23(C4:D4), (C22xDic3):9C6, (C6xC12).263C22, (C2xC62).58C22, C6.126(D4:2S3), (C6xDic3).138C22, (D4xC3xC6):16C2, (C2xC6):5(C3xD4), C2.27(C3xS3xD4), (C2xD4):5(C3xS3), (C2xC3:D4):6C6, C3:5(C3xC4:D4), (C3xD6:C4):36C2, (C6xC3:D4):20C2, (C2xC4).17(S3xC6), (Dic3xC2xC6):18C2, C6.32(C3xC4oD4), C2.15(C6xC3:D4), C22:3(C3xC3:D4), C22.61(S3xC2xC6), (C2xC6):10(C3:D4), (C2xC12).72(C2xC6), (C3xC6).226(C2xD4), C6.152(C2xC3:D4), (S3xC2xC6).61C22, (C3xDic3:C4):37C2, C2.18(C3xD4:2S3), (C2xC6).59(C22xC6), (C22xC6).32(C2xC6), (C3xC6).140(C4oD4), (C3xC6.D4):28C2, (C22xS3).11(C2xC6), (C2xC6).337(C22xS3), (C2xDic3).38(C2xC6), SmallGroup(288,710)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C3xC23.14D6
C1C3C6C2xC6C62S3xC2xC6C6xC3:D4 — C3xC23.14D6
C3C2xC6 — C3xC23.14D6
C1C2xC6C6xD4

Generators and relations for C3xC23.14D6
 G = < a,b,c,d,e,f | a3=b2=c2=d2=e6=1, f2=d, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, ebe-1=bd=db, fbf-1=bcd, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=de-1 >

Subgroups: 522 in 215 conjugacy classes, 70 normal (58 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, C23, C23, C32, Dic3, Dic3, C12, D6, C2xC6, C2xC6, C2xC6, C22:C4, C4:C4, C22xC4, C2xD4, C2xD4, C3xS3, C3xC6, C3xC6, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C22xS3, C22xC6, C22xC6, C4:D4, C3xDic3, C3xDic3, C3xC12, S3xC6, C62, C62, C62, Dic3:C4, D6:C4, C6.D4, C3xC22:C4, C3xC4:C4, C22xDic3, C2xC3:D4, C22xC12, C6xD4, C6xD4, C6xDic3, C6xDic3, C3xC3:D4, C6xC12, D4xC32, S3xC2xC6, C2xC62, C23.14D6, C3xC4:D4, C3xDic3:C4, C3xD6:C4, C3xC6.D4, Dic3xC2xC6, C6xC3:D4, D4xC3xC6, C3xC23.14D6
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2xC6, C2xD4, C4oD4, C3xS3, C3:D4, C3xD4, C22xS3, C22xC6, C4:D4, S3xC6, S3xD4, D4:2S3, C2xC3:D4, C6xD4, C3xC4oD4, C3xC3:D4, S3xC2xC6, C23.14D6, C3xC4:D4, C3xS3xD4, C3xD4:2S3, C6xC3:D4, C3xC23.14D6

Smallest permutation representation of C3xC23.14D6
On 48 points
Generators in S48
(1 3 5)(2 4 6)(7 11 9)(8 12 10)(13 15 17)(14 16 18)(19 21 23)(20 22 24)(25 27 29)(26 28 30)(31 35 33)(32 36 34)(37 41 39)(38 42 40)(43 47 45)(44 48 46)
(1 30)(2 21)(3 26)(4 23)(5 28)(6 19)(7 34)(8 42)(9 36)(10 38)(11 32)(12 40)(13 20)(14 25)(15 22)(16 27)(17 24)(18 29)(31 48)(33 44)(35 46)(37 47)(39 43)(41 45)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(19 26)(20 27)(21 28)(22 29)(23 30)(24 25)(31 41)(32 42)(33 37)(34 38)(35 39)(36 40)(43 46)(44 47)(45 48)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 45)(8 46)(9 47)(10 48)(11 43)(12 44)(19 29)(20 30)(21 25)(22 26)(23 27)(24 28)(31 38)(32 39)(33 40)(34 41)(35 42)(36 37)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 40 13 33)(2 32 14 39)(3 38 15 31)(4 36 16 37)(5 42 17 35)(6 34 18 41)(7 26 45 22)(8 21 46 25)(9 30 47 20)(10 19 48 29)(11 28 43 24)(12 23 44 27)

G:=sub<Sym(48)| (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,47,45)(44,48,46), (1,30)(2,21)(3,26)(4,23)(5,28)(6,19)(7,34)(8,42)(9,36)(10,38)(11,32)(12,40)(13,20)(14,25)(15,22)(16,27)(17,24)(18,29)(31,48)(33,44)(35,46)(37,47)(39,43)(41,45), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,26)(20,27)(21,28)(22,29)(23,30)(24,25)(31,41)(32,42)(33,37)(34,38)(35,39)(36,40)(43,46)(44,47)(45,48), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,45)(8,46)(9,47)(10,48)(11,43)(12,44)(19,29)(20,30)(21,25)(22,26)(23,27)(24,28)(31,38)(32,39)(33,40)(34,41)(35,42)(36,37), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,40,13,33)(2,32,14,39)(3,38,15,31)(4,36,16,37)(5,42,17,35)(6,34,18,41)(7,26,45,22)(8,21,46,25)(9,30,47,20)(10,19,48,29)(11,28,43,24)(12,23,44,27)>;

G:=Group( (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,47,45)(44,48,46), (1,30)(2,21)(3,26)(4,23)(5,28)(6,19)(7,34)(8,42)(9,36)(10,38)(11,32)(12,40)(13,20)(14,25)(15,22)(16,27)(17,24)(18,29)(31,48)(33,44)(35,46)(37,47)(39,43)(41,45), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,26)(20,27)(21,28)(22,29)(23,30)(24,25)(31,41)(32,42)(33,37)(34,38)(35,39)(36,40)(43,46)(44,47)(45,48), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,45)(8,46)(9,47)(10,48)(11,43)(12,44)(19,29)(20,30)(21,25)(22,26)(23,27)(24,28)(31,38)(32,39)(33,40)(34,41)(35,42)(36,37), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,40,13,33)(2,32,14,39)(3,38,15,31)(4,36,16,37)(5,42,17,35)(6,34,18,41)(7,26,45,22)(8,21,46,25)(9,30,47,20)(10,19,48,29)(11,28,43,24)(12,23,44,27) );

G=PermutationGroup([[(1,3,5),(2,4,6),(7,11,9),(8,12,10),(13,15,17),(14,16,18),(19,21,23),(20,22,24),(25,27,29),(26,28,30),(31,35,33),(32,36,34),(37,41,39),(38,42,40),(43,47,45),(44,48,46)], [(1,30),(2,21),(3,26),(4,23),(5,28),(6,19),(7,34),(8,42),(9,36),(10,38),(11,32),(12,40),(13,20),(14,25),(15,22),(16,27),(17,24),(18,29),(31,48),(33,44),(35,46),(37,47),(39,43),(41,45)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(19,26),(20,27),(21,28),(22,29),(23,30),(24,25),(31,41),(32,42),(33,37),(34,38),(35,39),(36,40),(43,46),(44,47),(45,48)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,45),(8,46),(9,47),(10,48),(11,43),(12,44),(19,29),(20,30),(21,25),(22,26),(23,27),(24,28),(31,38),(32,39),(33,40),(34,41),(35,42),(36,37)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,40,13,33),(2,32,14,39),(3,38,15,31),(4,36,16,37),(5,42,17,35),(6,34,18,41),(7,26,45,22),(8,21,46,25),(9,30,47,20),(10,19,48,29),(11,28,43,24),(12,23,44,27)]])

72 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D3E4A4B4C4D4E4F6A···6F6G···6S6T···6AG6AH6AI12A···12H12I···12P12Q12R
order12222222333334444446···66···66···66612···1212···121212
size1111224121122246666121···12···24···412124···46···61212

72 irreducible representations

dim11111111111111222222222222224444
type+++++++++++++-
imageC1C2C2C2C2C2C2C3C6C6C6C6C6C6S3D4D4D6D6C4oD4C3xS3C3xD4C3:D4C3xD4S3xC6S3xC6C3xC4oD4C3xC3:D4S3xD4D4:2S3C3xS3xD4C3xD4:2S3
kernelC3xC23.14D6C3xDic3:C4C3xD6:C4C3xC6.D4Dic3xC2xC6C6xC3:D4D4xC3xC6C23.14D6Dic3:C4D6:C4C6.D4C22xDic3C2xC3:D4C6xD4C6xD4C3xDic3C62C2xC12C22xC6C3xC6C2xD4Dic3C2xC6C2xC6C2xC4C23C6C22C6C6C2C2
# reps11111212222242122122244424481122

Matrix representation of C3xC23.14D6 in GL4(F13) generated by

3000
0300
0010
0001
,
1000
21200
0001
0010
,
12000
01200
00120
00012
,
1000
0100
00120
00012
,
4000
71000
00120
0001
,
11200
5200
0008
0080
G:=sub<GL(4,GF(13))| [3,0,0,0,0,3,0,0,0,0,1,0,0,0,0,1],[1,2,0,0,0,12,0,0,0,0,0,1,0,0,1,0],[12,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12],[1,0,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[4,7,0,0,0,10,0,0,0,0,12,0,0,0,0,1],[11,5,0,0,2,2,0,0,0,0,0,8,0,0,8,0] >;

C3xC23.14D6 in GAP, Magma, Sage, TeX

C_3\times C_2^3._{14}D_6
% in TeX

G:=Group("C3xC2^3.14D6");
// GroupNames label

G:=SmallGroup(288,710);
// by ID

G=gap.SmallGroup(288,710);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,701,590,555,9414]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=e^6=1,f^2=d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,e*b*e^-1=b*d=d*b,f*b*f^-1=b*c*d,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=d*e^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<